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A new kind of a particle simulation algorithm suitable for following long time scale evolu- 
tion of electromagnetic beams in plasma is presented. The algorithm is based on particle and 
field equations averaged over the rapid laser oscillations and the model constitutes the 
electromagnetic counterpart for the Zakharov’s model for electrostatics. This code can be 
reduced to a fully fluid code, if so desired, by replacing the electron dynamics. Computational 
remarks upon implementation of the algorithm are given. Test results of the code applied 
to the Rayleigh spread and self-focusing of an intense laser beam in a plasma are discussed. 
6 1991 Academic Press, Inc. 

1. INTRODUCTION 

The simulation of the physical behavior of high frequency electromagnetic beams 
propagating in a plasma involves several aspects. First, in terms of frequency scales, 
the electromagnetic radiation has typically very high frequency (unless it is in 
resonance or propagates in an overdense plasma), wO - ck,, where k, is the 
wavenumber of the wave and c is the speed of light. Second, plasma oscillations 
involve the electron plasma frequency oP = Jw which is typically much 
smaller than the photon frequency oO in an underdense plasma. In what follows we 
concern ourselves primarily with underdense plasmas. Third, there are time scales 
associated with ions (such as the ion plasma frequency up,, and ion acoustic 
frequency koc, with c,~ being the sound speed) and those associated with the 
transport of the optical beam (including diffusion, diffraction, scattering, and 
dissipation (depletion)). Some of these processes may involve plasma instabilities 
such as parametric instabilities. 

Similar hierarchy of spatial scales can be discerned as well. They arc the electro- 
magnetic wavelength, plasma wavelength, and the Debye length, the dimensions of 
the optical beam (the width and the length), and the transport length such as the 
depletion length. 

The interrelation between the high frequency electromagnetic waves and the 
plasma oscillations has been an active area of research and the computational 
efforts have been fairly well documented [l-3]. However, the investigation of the 
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beam dynamics over longer time scales and larger spatial extent is less developed. 
Some attempts have been made [4] but these tend to be not fully self-consistent. 
It is of vital importance, therefore, to develop a numerical model that encompasses 
over time scales much longer than the radiation time scale and that can follow the 
overall dynamics (i.e., transport) of the optical beam. Only with such a model one 
can fully study, for example, the long time scale evolution and transport of the 
beam in applications to the beat wave accelerator [l] and the plasma fiber 
accelerator [S]. In these applications it is important to make the length of the 
optical beam sufficiently short so that it does not induce instabilities related to ionic 
responses. This simplifies the experimental situations along with the computational 
considerations. In what follows we confine ourselves to these circumstances only. 

The present effort of model development may be regarded as an electromagnetic 
counterpart to the Zakharov model [6] of electrostatic pulses and to the sub- 
sequent numerical calculations [7, 81. In Section 2 we present our model of 
time-averaged (or phase-averaged) equations: the equations governing the evolution 
of electromagnetic fields and the particle dynamics are averaged over the rapid laser 
oscillations. This way only the secular changes in field quantities will be followed. 
Also, since typically the amplitude of the modulation is much smaller than the 
amplitude of the wave, this scheme has the additional advantage of making the 
signal cleaner by averaging out the masking dominant oscillations. In Section 3 
computational algorithmic considerations are discussed. Test results of the code (for 
Rayleigh spread in vacuum and self-focusing of an intense optical beam in a 
plasma) are discussed in Section 4, followed by the conclusions in final Section 5. 

2. MATHEMATICAL FORMULATION 

The basic idea in developing the mathematical model for computation is to 
average the equations evolving the electromagnetic field and electrons (the ions are 
assumed to be stationary in this first version) over the short laser oscillation period. 
That way we eliminate the fast time scale of the uninteresting rapid oscillations and 
follow only the slower time scales associated with the net changes in quantities of 
interest. The averaging in space and time can be carried out simultaneously 
provided the ansatz is chosen appropriately. 

Consider the wave equation for the vector potential instead of the set. of 
Maxwell’s equations for the electric and magnetic fields. This is done because 
averaging Maxwell’s equations over the laser oscillation period would lead to a set 
of trivial identities. Further, if we had chosen to study the wave equation in terms 
of either electric or magnetic field, the plasma contribution would appear as the 
time derivative of the plasma current, whereas when using the vector potential the 
plasma current as such appears in the wave equation. Writing the electric and 
magnetic fields in terms of their potentials, 

Ed@-v, BsVxA, 
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the wave equation, derived from Maxwell’s equations, becomes 

(l/c) v a@ 
$V2A+ at = (2) 

The Coulomb’s gauge, V . A = 0, is chosen for the potentials. This allows a clear 
separation of slowly and rapidly varying quantities. For instance, in the case of the 
electric field, the rapidly varying electromagnetic part is entirely given by the vector 
potential. The scalar potential like the particle density, on the other hand, is slowly 
varying (the variations in particle density are slow compared to the laser oscilla- 
tions because they are produced by the slow time scale ponderomotive force): 

V.E=4ne(nj-n,)*V2@=4rre(ni-n,). (3) 

For simplicity, the electromagnetic fields are assumed to have circular polariza- 
tion and the vector potential is written in the form 

A(x, t) = a(x, t) exp{ik,z - iw,t - i$(x, t)}(a + ij), (4) 

where amplitude “a” and phase shift “$” are slowly varying (compared to the laser 
oscillations), real quantities: 

The averaging over laser oscillations now becomes straightforward for most terms 
in the wave equation: 

f[ IA~2d~=;A-A*=n(x,Q2 
0 

tj /A/2dr=;A.A*=a(x, t)2. 
(6) 

Using the expression (4) for the vector potential and multiplying the wave equation 
by the complex conjugate of A, the real part of the wave equation yields an 
averaged partial differential equation for the amplitude, a(x, t), and the imaginary 
part an averaged equation for the phase shift, I(/(x, t): 

a* - 
at* 

(7) 



TRANSPORT MODEL OF OPTICAL BEAMS 1x9 

and 

=C2V.(a2VII/)-2a (8) 

In deriving an expression for the plasma current we assume that the ions, being 
much heavier than the electrons, can be regarded stationary over the period of 
interest. This is motivated by our desire to operate in a regime void of parametric 
instabilities (see Barnes et al. [9]). Thus the current can be written in the form: 

J =I q,n,v, z -en,v,,. (9) 

The electron contribution to the plasma current is obtained by using the relativistic 
equation of motion: 

n,,;p+n,.v.Vp= -en,E- 
(10) 

where P is the pressure of the electron fluid. (The subscript “e” has now been 
dropped from the electron velocity). We will expand the electron velocity (as well 
as momentum) in terms of the normalized quivering velocity ,D s ea/mc’ --c 1. In 
order to include the ponderomotive effects it is necessary to keep terms up to the 
second order in p. To incorporate the effects due to the electron density depression 
we need to keep terms up to the third order in p. Keeping terms up to the third 
order only, we can drop the pressure term, because it is of the fourth order in ,u, 

(11) 

and, since an, is produced by the ponderomotive force, it is of the order of p2, and 
so 

( > 
2 

VP- 3. o(g). 
VOX 

This causes our model to differ from earlier works on the subject [lo, 111 in which 
the ponderomotive force has been balanced by the pressure gradient. In our model, 
because of the assumed shortness of the laser pulse, the physical process competing 
with the ponderomotive force is the electrostatic force. The equation of motion for 
electrons, therefore, can be written as 

$P, +p2+p3)+v1 .V(P, +Pz)+v2.VP, 

=eV@+(r)g+(z) (v,+v,)x(VxA), (12) 
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and the plasma current as 

Jz -eno(vl +v,+v,)-edn,v,, (13) 

where the subscript “i” stands fdr the ith power in p. 
It is important to notice that even though the thermal velocity of the electrons 

does not contribute to the plasma current explicitly, it still affects the current 
through the relativistic mass increase of the electrons: 

y = Jl + (PO + p1+ p2 + pd2/m2c2, (14) 

where pO denotes the momentum corresponding to the thermal velocity. In case of 
a cool plasma the effect of pO is, of course, negligible. 

The electron momenta in different orders, as obtained from the relativistic 
equation of motion, are given by 

(15) 

In order to express the momenta in terms of the field quantities only, we need to 
define the different order velocities u,, i = 1,2,3. This may be done by expanding 
the relativistic gamma in powers of p: 

PO.P,+~~:+PO’PZ+PO.P3+P,‘PZ I II (16) 

where 1~~ c ,,/m. Using this expression for the electron velocities in 
different orders they become 

(17) 
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where we noted that the terms with odd powers of the thermal velocity vanish. 
Using these expressions for the electron velocity, we can now write all the different 
order electron momenta in terms of the field quantities: 

(18) 

The expression for the second-order momenta consists of only slowly varying 
terms (@ and a) and it will be kept in the differential form: In the code we will store 
p2 as a grid quantity and advantage it explicitly. The third-order momentum, 
however, consists of both slowly and rapidly varying terms, and we find an expres- 
sion for p3 by approximating the behavior of rapidly varying terms by exp( - io,t): 

The different order electron velocities are now given by 

1 
v2= - P2 ( ) my0 

Having everything in the plasma current expressed in terms of the field poten- 
tials, we can carry out the averaging over the rapid laser oscillations. As in the case 
of the left-hand side of the wave equation, this is done by multiplying the plasma 
current by the complex conjugate of the vector potential and averaging over the 
laser oscillation period. The first order current is 

and so 

J, = -eenOv, 

(21) 

The second-order current is slowly varying and therefore it vanishes upon 
averaging. The third-order current calls for special care. It contains terms that are 
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not proportional to the vector potential. Therefore, if we multiply it by the complex 
conjugate of the vector potential, unphysical terms will arise due to phase mixing. 
To avoid this, the term not proportional to A must be averaged using real represen- 
tation. The third-order current is given by 

J, = -e(n,,v, + 6n,v,) = - $ 
( )I 

pX -i (~~cy,)~p:p, - e&z,v,. 
1 

(22) 

The two latter terms, being proportional to A can be averaged using complex 
notation: 

Averaging the first term in the expression for J3 we return to real notation: 

CA . VP, + (VA). ~21. 

(23) 

(24) 

Carrying out the averaging term by term, we find 

A.[A.Vp,] dt= /AiAic’,p2,dt=aipz, AiA,dt 

=aiP2,(fa2 s;,j) for i, j=x, y 

= $a’V..p,, (25) 

where V, 3 a(a/ax) + $(a/@), and 

where rp E koz - o. t - $. Thus the averaged value of the first term is 

f-26) 

p,.A*dt= -(&){ a2p2.V&+i a2V..p2+-pZ.VTa2 [ ; ]]t t2?’ 
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where we have used the fact that V,cpr -V,$. The averaged 
can now be written as 

193 

third-order current 

J,.A*dt z(gg{a’[(g-)2-2y 

1 
a2V.~p2+~p2.V~a2 , 6’8) 

and the total current is given by 

1 
+- ( )L 1 

woo0 
a’p,.V,IC,+i a2V,.p2+2p2.V7.a2 

( 111 , (29) 

where N, s 1 + 6n,/n,. Using this expression we can now write the amplitude and 
phase equations from (7) and (8): 

2 

- 2 [($)‘-c2 ~V$~2]+2a(m,~+c2ko~) 

‘t2a=::~~~~a,~~j2-2N~+i,I,;.2.V~*, (30) 

and 

=c2V.(a2V$)-2a 

(31) 

The electrons are needed for calculating the electron density, N,, appearing in 
the amplitude equation. When the equation of motion for electrons is averaged 
over the laser oscillation period, only two forces from the Lorentz force survive, 
the electrostatic force and the ponderomotive force, which are both second order 
in the quivering velocity: 

ip= -eE,-mc2V $-GT (32) 

Equations (30), (31), and (32) constitute the basic set of equations for our system 
in the slow time scale. As we remarked in the Introduction, they form the 
electromagnetic counterpart of the Zakharov equations in electrostatics. In the 
following we shall try to solve these basic equations. 
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3. NUMERICAL ALGORITHM 

From the form of the field equations one notices that the direction of the beam 
propagation singles out. Furthermore, the transverse directions appear only in 
terms involving inner products. This allows us to represent the transverse dimen- 
sions by one scalar variable (instead of a two-dimensional vector), which we will 
call “x.” The direction of beam propagation is labeled by “JJ.” With these conven- 
tions the amplitude and phase equations are 

and 

a a* 
at ( 1 

a2 x = c*(a* V** + Va* . V*) - 2w,a 
(;+$i) 

-~(~)‘($)[a2~+~p2x~], 

(33) 

where V = a(ajax) + $(a/+). 
The code solves for the four interdependent quantities, a, a,, I/J, and $t by the 

standard leap-frog integration over the four first-order partial differential equations 
obtained from the above two equations. In addition the electrons are pushed and 
the electron density updated at every time step. The structure of the code is as 
follows: 

l initialize fields 
l initialize particles 
l loop over the main program: 

- push particle positions 
- accumulate charge density and compute electrostatic field 
- update the amplitude and the time derivative of phase shift 
- calculate total force on particles and advance the grid momentum 
- update the phase shift and the time derivative of amplitude 
- update grid momentum and particle momentum. 

As is usual, the first version of the code is built with periodic boundary condi- 
tions because for them the conservation of various quantities is easy to check. On 
the other hand, the periodic boundary conditions in the transverse (x) direction 
implies that we are simulating an infinite number of parallel beams. The width of 
the simulation system has to be chosen large enough compared to the width of the 
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Gaussian beam so that the parallel beams do not interact significantly with each 
other during the run. 

The spatial differentiation may be performed using fast Fourier transforms to 
retain as high accuracy as possible. Unfortunately, the theoretical behavior of the 
phase shift, II/, is such that at the edges in the transverse direction there is a discon- 
tinuity in the spatial derivative of $. This discontinuity is, of course, artificial, but 
fortunately it takes place in the region where it should have no significance (the 
amplitude, having a Gaussian profile, has dropped to practically zero). However, 
when using Fourier transform, this effect will no longer be localized, but the sharp, 
unphysical structures will be instantaneously reflected all over the grid. Therefore 
we ended up adopting finite differencing for the spatial differentiation. This also 
eliminates the complex dealiasing technique [ 121 necessary with Fourier transforms 
to handle the equation lh+b/dt = (a2t,bt)/a”. 

Furthermore, it is important to notice that whenever the amplitude vanishes, the 
phase information is lost. This is reflected in the leap-frog equations in that the 
calculation for $, involves division by a’. To circumvent this problem that has 
arisen from our choice of independent variables (amplitude and phase instead of 
field components) and equations (wave equation instead of the set of Maxwell’s 
equations), we introduce a ghost factor in evaluating the time derivative of the 
phase shift: 

ti = (a’h) a2(a2$1) 
, 7+----- a4 + E2 ) (35 

where E* is a very small number (typically we have used s2 = (0.0001 . at- 
(0.001 Q)~). The ghost factor will have a negligible effect in the computation when 
the amplitude is finite, and it will prevent a divergence without altering the value 
of phase shift when the amplitude vanishes. We note that Eq. (35) is analytically 
continuously reducible to the original equation as sz + 0. 

The choice of cl/,=0 for a2 =O (rather than some other value) is supported by 
recent theoretical work [ 13, 143, where analytical solutions have been obtained for 
*,=o. 

4. TESTING OF THE CODE: 
DIFFRACTION AND SELF-FOCUSING OF A BEAM 

The testing of the code was carried out by first excluding the plasma from the 
system by leaving out the plasma current terms in the field equations. This 
corresponds to electromagnetic beams propagating in vacuum. A beam with a 
Gaussian intensity profile, 

a = a, e ~ .+; ) (36) 

is considered. The evolution of a Gaussian beam is reasonably well understood 

581/94/l-14 
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theoretically [15]. Assuming a stationary state, the behavior of the beam radius 
due to diffraction is given by 

(37) 

where y, E ik, wi is the Rayleigh range. In the code, instead of assuming stationary 

b 

2WD 

FIG. 1. Rayleigh spread of a laser beam: (a) The ratio of the instantaneous amplitude (at the beam 
axis) to the initial one is plotted as given by the simulation code. For comparison, also the curve given 
by the two dimensional diffraction theory is included. (b) Radial profile of a Gaussian beam at different 
times as given by the diffraction theory. After about three Rayleigh spreading times the beam is seen to 
extend significantly outside the simulation box and thus it will, due to the periodic conditions, cause 
noticeable interference effects. 
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state (a/at = 0), we give initially a beam uniform in y (alay = 0). In doing this, the 
roles of time and direction of propagation get interchanged and we expect to see 
Rayleigh spreading in time rather than in space, 

w(t)2 = wg 1 + t2/7-;1, (38) 

where T, is the Rayleigh time corresponding to the Rayleigh range, 
T, E ~cx~(w$c~). Instead of monitoring the beam radius, u(t), we monitor the 
amplitude, noting that the total power is invariant: 

P,s7:,w;=a(t)2W(t)2 in three dimensions 

P2-a~w,=a(t)2w(t) in two dimensions. 

The behavior of the peak amplitude is thus specified by the behavior of the beam 
radius, and so we can equally well follow the evolution of the amplitude. In 
Fig. l(a) we have plotted the time behavior of the peak amplitude obtained from 
the simulation run, together with the theoretical curve. The two curves are identical 
until after about three Rayleigh times they start diverging. This is due to the signili- 
cant overlapping at the skirts of the beam we are monitoring with the identical 
beams parallel to it (see Fig. l(b)) that exist outside the simulation box due to the 
choice of periodic boundary conditions. 

To further test the field solver, we include the plasma effects-not in a particle 
description but in terms of the field quantities via theoretical formulae. First, con- 
sider the case in which the self-focusing is solely due to the relativistic mass increase 
of the electrons [ 161. The dispersion relation for electromagnetic waves in vacuum, 
00 = ok,) is then replaced by the plasma dispersion relation, w0 = Jm, for 
the zeroth order solution in the amplitude equation, and a term quadratic in 
amplitude is added into the field equations. According to Ref. [16] at low 
intensities the beam should diffract, but above a critical intensity we should see self- 
focusing. The value estimated for the critical intensity is (in three dimensions) 

L, 
( ) 

2 

I Crz - > 
w 0 

(39) 

where I.,, is the collisionless skin depth and the intensity is defined as the normalized 
quivering velocity of the laser, 

e2E2 I= 
m2i02c2’ 0 

(40) 

We ran the code with beam width w. = lO.O(c/w,) (the width of the simulation box 
was 64(c/w,)) and saw self-focusing take over the diffraction at intensities higher 
than I- 0.05, whereas the prediction for critical intensity (for the two-dimensional 
case) given by Schmidt and Horton is Z,, = 0.07 for these parameters. The agree- 
ment seems reasonably good. 
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Next we included self-focusing terms due to the ponderomotive force. This was 
done by assuming that the system had reached a state in which the ponderomotive 
force acting on electrons is balanced by the electrostatic force due to the charge 
separation (induced by the ponderomotive force) 11133. In this model the electron 
density is given by (in two spatial dimensions) 

1 knplitude in ‘I’ime 

1’ ~i..yi 
/-’ .” 1. ;.,/ I 

I 
^,I 

0.95 

b 
1.03 

1.01 

1.00 

(41) 

FIG. 2. Evolution of a Gaussian beam propagating in plasmas as given by the simulation code using 
full electron dynamics: (a) Ii I,,; the beam diffracts. (b) I> I,,; the beam is self-focused followed by 
diffraction. 
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The theoretical prediction for the critical intensity in this case is (for two dimen- 
sions) 

(42) 

For the parameters given above the self-focusing threshold is still given by 
I,, = 0.07, whereas our simulation yielded I,, ~0.05. It should be noticed that the 
time scale for self-focusing of ponderomotive origin is much longer than that for 
relativistic self-focusing. This is because in the ponderomotive self-focusing a net 
flux of electrons has to move appreciable distances, whereas the relativistic effect is 
almost instantaneous. This is the reason why the critical intensity for the onset of 
the self-focusing was dominated by the relativistic effects even when the 
ponderomotive effects were included. 

As the next stage of testing, we included dynamical electrons and stationary ions 
in the system. The electrons are pushed at every time step using ponderomotive and 
electrostatic forces, and from their positions the plasma density and electrostatic 
forces can be derived. One dimensional test has been carried out (the direction of 
propagation is taken to be uniform, thus modeling an infinite beam). In Fig. 2(a) 
two time histories from these runs are shown. Because of the one-dimensional 
nature of the testrun, we have used 100 particles per grid cell. A number quite this 
high is not necessary even in the one-dimensional case but it makes the interpreta- 
tion of the testrun results much easier by giving a very good signal to noise ratio. 
The width of the simulation system is 25.6(c/w,), the frequency of the laser is 50, 
and the radius of the beam is u’~ = ~.O(C/O,). The thermal velocity of the electrons 
is one-tenth of the speed of light thus corresponding to a 5 keV plasma. At low 
intensities the beam diffracts as indicated by the reducing amplitude for I,, = 0.15 
(Fig. 2(a)) and at higher intensities, like I, = 0.36, we see an increase in amplitude 
implicating self-focusing (Fig. 2(b)). The critical intensity given by the theoretical 
model is I,, = 0.18 for these parameters, whereas in the simulations it was observed 
to be approximately I,., - 0.20. 

5. CONCLUSIONS 

We have presented a new kind of a particle simulation algorithm intended for 
studying the long time scale evolution or transport of an electromagnetic beam in 
plasma. In particular, we have used it to study self-focusing of a laser beam in 
plasma. 

The code is based on a set of equations consisting of the wave equation written 
in terms of the vector and scalar potentials, and the equation of motion for the par- 
ticles averaged over the rapid laser oscillations. This way the code does not need 
to resolve for the rapid oscillations and the modulation can be seen directly as the 
primary evolution of the beam. 
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For the intended application [9] the ions were assumed to be stationary and 
only electrons were being advanced. Even in this simplified form the test runs of the 
code gave results that are in agreement with the theoretical work done in the field 
of self-focusing in plasma. 

When implementing the two-dimensional version of the code (by including 
dynamics in the direction of propagation) we also move the simulation system into 
a frame moving at the group velocity of the laser beam. This way we can follow the 
beam far in the direction of propagation without great computational costs (that 
would be brought about when following the beam in laboratory frame by including 
an extensive grid). 
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